Neuroprotection against nerve agent using a blood glutamate scavenging system in rats
Sergiu Costinas
Mentored by Dr. McDonough

Introduction
Organophosphorus (OP) chemical compounds, such as tabun, sarin, soman, and VX, are highly toxic and commonly used in chemical warfare (McDonough, Hackley, Cross, Samson, & Nelson, 1983). They are referred to as cholinesterase inhibitors because of their ability to block an enzyme called acetylcholinesterase in the brain and body, thereby stopping the hydrolysis of the neurotransmitter acetylcholine and leading to the overstimulation of nerve cells, muscles and glands (McDonough, Iaas, Crowley, Mays, & Modrow, 1989). This causes a multitude of severe toxic signs such as hypersecretions, fasciculations, tremors, convulsions, respiratory distress, and prolonged seizures (status epilepticus). The prolonged seizures lead to subsequent rises in brain glutamate levels. Glutamate is an excitatory neurotransmitter that can cause nerve excitotoxicity when present in excessive levels that can lead to the development of neuroapathy and severe neurological deficits (Zlotnik et al., 2006).

So far, the only options for mitigation that may be exposed to nerve agents are post-exposure therapy with atropine to block cholinergic overstimulation, an oxime such as 2-PAM to reactivate the inhibited enzyme, and an anticonvulsant to moderate seizures (Shih, Dumbro, & McDonough, 2002). However, these drugs must be given immediately after exposure and in high doses to be maximally effective. This project tested an alternate method for mitigating the neurotoxic effects of nerve agents, by eliminating excess glutamate from the brain. It is hypothesized that a decrease of blood glutamate levels and an increase of the driving force for the brain-to-blood glutamate elimination can be achieved by infusing high amounts of the resident enzyme rat glutamate-oxaloacetate transaminase (rGOT) and the co-substrate oxaloacetate (OxAc) which act together to transform glutamate into 2-ketoglutirate. This treatment, applied after the onset of nerve agent seizures may significantly reduce the amount of brain glutamate and reduce or prevent the neuropathology (Gentlieb, Wang, & Teichberg, 2003; Zlotnik et al., 2006). This is what was tested in this project.

Methods and Materials

• Sprague-Dawley male rats with dealer-imprinted jugular catheters served as subjects.
• Animals were pretreated intraperitonially (IP) with the oxime HI-6.
• Thirty minutes later, the animals were challenged subcutaneously (SC) with 180 µg/kg soman.
• One minute later, the animals were treated intramuscularly (IM) with 2.0 mg/kg atropine methyl nitrate (AMN).
• Animals were visually monitored for seizure onset.
• Three minutes following seizure onset, the animals were administered by slow intravenous (IV) infusion (10 µg/kg over 30 min; a rate of 330 µg/kg/min) one of the combinations of OxAc + rGOT shown in Table 1.
• Infusions were done using a TS-1B/W0109-1B syringe pumps allowing for precise infusion rates.
• Animals were then treated IM with 10 mg/kg diazepam 40 minutes following seizure onset.
• The animals were scored for presence and severity of toxic signs at 30 minutes, 1, 2, 4, and 24 hours after seizure onset.
• At 24 hours, the animals were then perfused and the brain extracted.
• Brains were processed for histopathology and sent to a pathologist for evaluation.

Table 1. Treatment vehicle combinations required for experimental procedure.

Results
One key piece of data collected was the average fatality rate of each treatment (Graph 1). Saline and OxAc treatments acted as the control, averaging a fatality rate of 33%. Saline and OxAc treatments had a lower fatality rate of 25%, and 0.7 nmol rGOT and OxAc treatments had the lowest rate, with 17%. However, the other treatment types had an increase in the fatality rate. Another aspect studied was weight change in the animals before seizure onset and 24 hours following onset (Graph 2). The saline treatment vehicle had a weight change of 42.7g while the saline and rGOT treatment vehicle had a change of 38.3g. However, that was the lowest weight change seen when compared to the other treatment methods. The final piece of data collected on the animals was the toxic signs presented at 30 minutes and 1, 2, 4, and 24 hours post-seizure onset. However, the weight change and toxic sign data were subjected to Kruskal-Wallis One Way Analysis of Variance tests, both of which indicated that these differences between groups were not statistically significant.

Conclusion
The purpose of this project was to test the effectiveness of a blood glutamate scavenging system using a rGOT and OxAc treatment combination to reduce brain damage following nerve agent-induced seizures. The weight change and toxic signs data showed no statistically significant differences between the agent control and treated groups, so no definitive conclusions can be made based on these data. Still, it is possible to draw conclusions when looking at the rate of mortality. When comparing the different treatments to the saline control, only the 0.7 nmol rGOT and OxAc treatment combinations resulted in a noticeable reduction in mortality. Other treatments, such as 2.0 µmol rGOT and OxAc combinations, had the opposite effects and resulted in a higher mortality rate.

These results are surprising since an increase in the concentration of the enzyme, rGOT, may have produced a detrimental effect. An increase in enzyme concentration should theoretically result in a higher conversion of substrates to products. However, in this case, higher levels of rGOT should have enhanced conversion of glutamate and OxAc to 2-ketoglutarate. However looking strictly at fatality rates may be not conclusive. Evaluation of potential differences in neuropathology is the key data needed to judge the effectiveness of this treatment.

Untill the neuropathology data is fully available, it is premature to make any definitive conclusions about the effectiveness or failure of the tested treatment. Blood glutamate scavenging is a relatively new approach in providing neuroprotection against neurological injuries (Teichberg, Cohen-Kashi-Malina, Cooper, & Zlotnik, 2009). Treatments similar to the one tested in this study have been shown to reduce neural damage and consequent behavioral debilitation in rat models of closed head injury and stroke. Because of these successes, this approach may still prove effective against nerve agent-induced brain damage and warrants further consideration.

Acknowledgements
I would first like to acknowledge Dr. McDonough and his team at the US Army Medical Research Institute of Chemical Defense (USMRICD) for their tremendous help in completing this project. Also, I would like to thank Mrs. McDonough, my faculty advisor, for her help and guidance. All animal manipulations and agent exposures were performed by Dr. McDonough and his technical staff.

References